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Dynamics-dependent criticality in models withq absorbing states
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We study a one-dimensional, nonequilibrium Potts-like model thatghggmmetric absorbing states. For
g=2, as expected, the model belongs to the parity-conserving universality clagg=Bdhe critical behavior
depends on the dynamics of the model. Under a certain dynamics it remains generically in the active phase,
which is also the feature of some other models with three absorbing states. However, a modified dynamics
induces a parity-conserving phase transition. Relations with branching-annihilating random walk models are
discussed in order to explain such a behavior.
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[. INTRODUCTION ken at the level of dynamics. Good candidates for such a
system are certain multispecies generalizations of the contact
Recently, dynamical and nonequilibrium properties ofprocess model6,7]. In the two-species case these models
many-body systems have been intensively studied. Of paexhibit the expected PC criticality. In the three-species case
ticular interest are nonequilibrium phase transitions thaHinrichsen suggestef’’] that such models will always re-
might appear in the stationary state of such systgihdtis ~ main in the active phase. This property, which should also be
believed that continuous phase transitions can be classifigtlie for models with a larger number of absorbing states,
into relatively few universality classes. It is becoming evi- follows from an approximate relationship with thespecies,
dent, however, that such a classification is far more compliparity-conserving branching-annihilating random walk mod-
cated in nonequilibrium systems than in equilibrium ones. Irels (q-BARW2, where the number at the end indicates the
the equilibrium case, renormalization group and conformalnumber of offsprings[8]. Recently, Hinrichsen’s conjecture
invariance theories gave a powerful description of this uni-was numerically confirmed for models with three and four
versal phenomena. In nonequilibrium, the situation is far lesgbsorbing statef9].
clear due to the lack of a general theory. Accordingly, a large One can thus expect that for a given dimensionality, the
body of works is based on numerical simulations. number of(symmetri¢ absorbing states is the relevant pa-
Models with absorbing states constitute a particularly richrameter determining the critical behavior of a given model.
class. For these models there is a substantial evidence thidbwever, for nonequilibrium systems some other details of
continuous phase transitions can be classified into some urthe dynamics as, e.g., exclusion effe€1d,13 or certain
versality classes. In particular, a large group of models falldocal symmetrieq14], might affect critical behavior. The
into the so-called directed percolatiéBP) universality class goal of the present paper is to provide yet another example of
and it was conjectured that all models with a single absorbthe dynamics-dependent criticality. In particular, we show
ing state, positive one-component order parameter and shothat for a one-dimensional model with three absorbing states
range dynamics should generically belong to this universalityts critical behavior is PC-like(instead of the expected
class[2]. Another group consists of models having a doubleg-BARW?2-like), when certain local constraints on the dy-
degenerate absorbing state or whose dynamics obey somamics of a model are introduced. Let us emphasize that
conservation law; they belong to the parity-conserdiR§)  these constraints, which can be regarded as a local symmetry
universality clas$3]. breaking, do not violate the symmetry between absorbing
The behavior of models with a larger number of absorbingstateq10]. We also suggest a mechanism that could explain
states was also addressed in the literature. For examplsyuch a behavior.
Bassler and Browne examined a model with three absorbing Our work shows that not only global properties of a given
states and concluded that depending on some parameter®del, as the number of absorbing states, but also certain
their model might exhibit DP or PC criticalify4]. However, details of the dynamics are relevant to determine its critical
the control parameters in their modgldsorption ratésin-  behavior. Accordingly, classification of the critical properties
troduce asymmetry between absorbing states when the critdf models with absorbing states is more complicated than
cal point is approached. Consequently, one or two species amiginally thought.
effectively expelled from the system upon approaching the The critical behavior 0oij-BARW2 models was recently
critical point hence the DP or PC criticality is an expectedfound to be richer than originally expected. Indeed, in one
feature of this model. Similarly, certain asymmetries are redimension hard-core effects are known to change the off-
sponsible for the DP criticality in yet another model with critical exponents of the mod¢ll1,17. Let us notice that
multiple absorbing states that was studied by JanEskn these effects do not change the location of the critical point
To examine the role of degeneracy, one has to study modknd of the on-critical exponenfd3]. At the coarse-grained
els where the symmetry between absorbing states is not bréevel, our model can be also regarded as a cegd&®RW2
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model. In our case, however, dynamical details have morealled nonactive. In addition to the steady-state density we
dramatic effect: they change both the location of the criticalalso looked at its time dependengg). In the active phase

point and values of all critical exponents. p(t) converges to the positive value while at criticalipyt)
has a power-law decay~t~°. In the absorbing phase the
[l. MODEL AND ITS MONTE CARLO SIMULATIONS densityp decays either faster than a powertafr as a power

Before defining our dynamical model, let us recall someOf t but with a different exponent than the critical exponent

basic properties of the usual equilibrium Potts model. Firs’: 1€ unit of time is defined as a singten averageupdate

we assign at each lattice site a g-state variableo; ©f €ach active site. ,
=0,1,...0-1. Next, we define the energy of this model In addition, we used the so-called dynamic Monte Carlo

through the Hamiltonian, method. vyhere on.e.sets the system i.n the absorbing stgte,
locally initiate activity, and then monitor some stochastic
e _2 5 D properties of surviving rungl7]. The most frequently used
~ Toiop characteristics are the survival probabil(t) that the ac-
tivity survives at least until timé and the number of active
where summation is over pairs ofandj that are usually sitesN(t) (averaged over all runsAt criticality these quan-
nearest neighbors andl is the Kroneckers function. This iities are expected to have power-law dedayt)~t‘5/ and

equilibrium model was studied using many different analyti—N(t)Ntn (For some model$= &', but exceptions are also
cal and numerical methods and is a rich source of the inforknown [1']) '

mation about phase transitions and critical phenoniés Our simulations were made for various system sizes and

f Tg S'muﬁf nHume_rlltcaI_Iy the equ_'“?mém Poits rtnocri]el ?_e'we ensured that the system was large enough so that our
ined using the Hamiltonial) one introduces a stochastic results are size independent.

Markov process V.Vith trans.it.ion rates c_hosgn in such a way The simplest case is to consider a one-dimensional chain.
that the asymptotic probability distribution is the Boltzmann However, forq=2 and for any temperatufg this model is

d'Str'tilutaonM Otne Fl’pss'lb'“tythOf cTootshl_ng sus[:rr]lc[(;ag]es 'S thetrivially equivalent to thel =0 temperature Ising model with
so-cafle etropolis aigorithm. In this me one Metropolis dynamics. Indeed, in this case the allowed moves

Itpolks a;_the (i_nergy glﬁeren?etlﬁ between The fm%' ?)nldt N~ are only those, which do not increase energy and are always
lal coniguration and accept the move with probabiiity mlnaccepted. The same rule governs the dynamics off th@

{1, 2F'T} whereT is temperature measured in units of the |_. :
interacti tant of the Hamiltonid), which to 'Sing chain.
Interaction constant ot the Hamiftoniat, which was set o To overcome this geometrical “pathology” we consider

unity. To obtain a final configuration one selects randomly 3ur A model on a ladderlike lattice where two chains are

zite a_r;)d ditslsta_t:f]oni '?gtootfr? in _ourl casg In th_‘:_ aboveb connected by interchain bonds such that each site has three
escribed aigorithm 10 ere IS always a positive prob- neighbors. Figure 1 illustrates the possibility of spreading of

?b'“lty off_leawtr_]g ahny gn;]gnhconﬂguratlo(mégn ?/vhen :]he activity in the ladder geometry fag=2. The results of the
inal configuration has a higher eneygiccordingly, such a simulations of such case are in agreement with the up-to-date

model does not have absorbing statesTor0. knowledge concerning one-dimensional systems with multi-
absorbing states. Thus we only briefly describe our results.
A. A model For q=2 the model has two symmetric absorbing stdtdls
To transform the standard Metropolis dynamics into theoi=0 or 1). Qualitatively, in this case the model resembles
dynamics with absorbing states we make the followingother models with two absorbing statg8,7], which are
modification. known to belong to PC universality class and our simulations
Restriction AWhen all neighbors of a given site are in the confirm such a behavior.
same state as this site, then this site cannot change its stateFirst, the steady-state measurement of the density of ac-
(at least until one of its neighbors is changed tive sites suggests a continuous phase transition between ac-
In the following, this nonequilibrium model will be re- tive and absorbing phases arouhet 2.7 (see Fig. 2 Mea-
ferred to asA model. Obviously, any ofj ground states of suring the time dependence pft) we observed that at
model(1) is an absorbing state @& model and the dynamics =2.7 p(t)~t~° where & is very close to the PC value
does not favor any of the absorbing states. Since the dynan®.286. Moreover, in the low-temperaturd {2.7) phase
ics of our models is obtained from a modification of the p(t)~t~ %% which is also a typical feature of PC models.
Metropolis algorithm of an equilibrium system, transition Additional confirmation of PC criticality in this case is ob-
probabilities are parametrized by temperaturelike quaiitity tained using the dynamical Monte Carlo method that yields
Strictly speaking, for our model the ordinafiie., equilib- 6’=0.29(3) andp=—0.02X3).
rium) temperature cannot be defined. Nevertheless, we will A different behavior appears in tleg=3 case. Although
refer to this quantity as temperature. in Fig. 2 one can see a sudden change of the order parameter
To study the properties of thi& model we performed aroundT=0.8, there is no phase transition in this case. Ex-
Monte Carlo simulation§MCS). A natural characteristic of amining the behavior op(t), we checked that even at low
models with absorbing states is the steady-state density ¢émperature T=0.5 and 0.6 the system remains in the ac-
active sites. A given sitei is active when at least one of its tive phase. In addition simulations suggest thatgfer4 and
neighbors is in a state different tharOtherwise the siteis 5 A model behaves similarly to thg=3 case.
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FIG. 2. The steady-state densityas a function ofl for A model
andq=2 (+),3 (x) and forB model withg=3 (). Simula-
tions were made for the system size- 30 000 and simulation time
XX 0 X 0O t=10° MCS. The low-temperature tail fa;=3 does not diminish

for longer simulations or larger system size.
X X 0 X 0O 9 gersy

FIG. 1. At positive temperature a single domain can branch intcaddition, this difference diminishes upon approaching the
additional domains. Successivie time) configurations differ only  transition point and within our numerical accuracy both tran-
by single-site flips. States 0 and 1 are represented by “X” andsjtions seem to take place at the same temperature. Later on
“0,” respectively. In the single-chain geometry amp=2 such a  \ve provide some arguments that could explain this apparent
branching is forbidden and domain walls can only diffuse or anni-cgincidence.
hilate. In terms of BARW models, Whgre eagh domain wall rgpre- The behavior op(t) (Fig. 3 is typical for PC universality
sents a particle, the above sequence is equivalent to branching. class. In the low-temperature phage<(2.7) we observe the

power-law decayp(t)~t~ 2 while at criticality (T=2.7)

Actually, we expect that foq=3 the model has a critical p(t)~t~° and we estimated=0.292). The dynamical
point but only afT=0. This point corresponds to the case of Monte Carlo method confirms the PC criticality of this
zero branching rate in@BARW2 model, which is knownto model [18]. Indeed, P(t) scales with the exponens’
be characterized by, e.g3=1 (with the order parameter =0.29(2) (Fig. 4 and at criticalityN(t) remains virtually
expressed in terms of the branching 4. constant(Fig. 5), which is in agreement with the PC value

As we already mentioned, the absence of the transition fof7=0-0- In our opinion, the above results clearly indicate the
q=3 andT>0 is an expected feature. However, as we will PC criticality of B model. This behavior can be qualitatively
show below, additional restriction in the dynamical rules of
our model induces a transition even fpe 3. 0

B. B model 05 r

This restriction can be formulated as follows. gt
Restriction B A flip into a state different from any of its
neighbors is prohibited. In other words, spontaneous creatior
of, for example, domains of typ& between domains of type

B andC is forbidden. HereA, B, andC denote thredgout of
q) different states.

Let us notice that restrictioB satisfies at the same time
restrictionA (but of course not vice vergaln the following 8
we will refer to the model satisfying restrictioB as B 2.5 : : : : : :
model. Let us also notice that restrictiBrdoes not break the
symmetry and model similarly toA model hag) symmetric
absorbing states. Results of the simulationsBahodel for FIG. 3. The time dependence of the densift) for B model
=3 are shown in Figs. 2-8or q=2 both dynamic# and  wjth g=3 and(from top T=2.9, 2.8, 2.7(critical), 2.6, 2.5, 2.4,

B are equivalent First, let us notice that the density(Fig.  and 2.3 (=20000). Each line is an average of 100 independent
2) is only slightly larger forB-model than forA-model with  runs which starts from random initial configurations. Straight dotted
g=2 (the difference is, however, larger than error bahs lines have slopes correspondingde 0.286 and 0.5.
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FIG. 4. The time dependence of the survival probabHity) for
B model withg=3 and(from top T=2.9, 2.8, 2.7(critical), 2.6,

logo(t)

FIG. 5. The time dependence of the number of active $itg$
for B model withq=3 and (from top) T=2.9, 2.8, 2.7(critical),

2.4, 2.2, and 2.0l(=50000). Each line is an average of about 10 2.6, 2.4, 2.2, and 2.0L(=50 000). Each line is an average of about
independent runs. Straight dotted lines have slopes corresponding 16° independent runs. The straight dotted line has a slope corre-
6=0.286 and 0.5, respectively. sponding to5=0.5.

explained by considering the relation between our model
and certain multispecies parity-conservigBARW?2 mod-
els.

The relation with such models is based on the observatio . L :
that each domain wall can be at least approximately identif’lrgum.en.t to explain thg PC criticality of tha_merI Is the
fied as a branching and annihilating random walker. AI-fOII,OW'ng' The suppressing of t.he proces@blmplles Sépa-
though precise mappings between absorbing states afgtion of time scales of parity-conserving processgs
BARW models are usually complicated, one can arfilie which happen at the much shorter time scale than parity-
that most relevant processes are only long-lived ones whicROnconserving processed). As a result theq_—BAI?WZ .
considerably simplifies the resulting BARW model. In par- Model spatially decomposes into single-species “clouds.
ticular, Hinrichsen argued that dynamics of models with two ' "€ dynamics within each “cloud” corresponds exactly to

absorbing states should be approximately described by tH8€ dynamics of they=2 B model (which is exactly the
following BARW2 model[7]: same as folA mode), which at the coarse-grained level is

given only by parity-conserving process@s. Nonconserv-
ing processe$4) operate only when different clouds collide
[20]. Upon approaching the transition point domains coarsen
This model is known to belong to the PC universality classand the distances between clouds increase. As a result, non-
[19]. Since there are several types of domain walls, mapeonserving processes happen only on a very long time scale.
pings for models with more than two absorbing states requir¢Snapshots of Monte Carlo simulations qualitatively confirm
several types of random walkers. Hooyberghs et al. arguefbrmation of such single-species cloyd®n the other hand,
that typically in the corresponding-BARW2 models the the order parameter of the system, i.e., the number of par-
following reactions should be includg8]: ticles is mainly determined by the parity-conserving pro-
cessedqthese processes determine the concentration of par-

Yen, hence processes of the ty(® are forbidden. The
g-species BARW2 model that correspond®tmodel is thus
Hescribed by reaction®) and (4). The main point of our

2X—0, X—3X. (2

X—=Y+Z, (3 ticles within clouds. As a result, the most relevant dynamics
of the model is dominated by the parity-conserving processes
Y+Z—X. (4)  that implies PC criticality. As we already mentioned, these

_ ) processes correspond to the coarse-grained dynamics of the
The proces$3) represents the formation of a domain of, e.9.,q=2 model, which thus explains why transition tempera-
type C between domains of typ& andB. The proces#4) is  tyres forq=2 and 3 are the same. It would be interesting to

its reverse and corresponds to the disappearance of the dgynfirm these qualitative considerations with more sound
main C. The g-species BARW2 modef2)—(4) differs from  tneoretical arguments.

the one studied by Cardy and (lzer[8]. However, the dif-
ferences do not affect the critical behavior that is the same
for both models. We expect that oArmodel forg>2 at the
coarse-grained level is also described ¢pBARW model
with reactions(2)—(4).

Let us now notice that in ouB model, the formation of
the intruding domairC between domainé andB is forbid-

Ill. CONCLUSIONS

In conclusion, we have shown that the critical behavior of
a model withqg absorbing states is not only characterized by
the number of absorbing states but that details of the dynam-
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