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Dynamics-dependent criticality in models withq absorbing states
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We study a one-dimensional, nonequilibrium Potts-like model that hasq symmetric absorbing states. For
q52, as expected, the model belongs to the parity-conserving universality class. Forq53 the critical behavior
depends on the dynamics of the model. Under a certain dynamics it remains generically in the active phase,
which is also the feature of some other models with three absorbing states. However, a modified dynamics
induces a parity-conserving phase transition. Relations with branching-annihilating random walk models are
discussed in order to explain such a behavior.
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I. INTRODUCTION

Recently, dynamical and nonequilibrium properties
many-body systems have been intensively studied. Of
ticular interest are nonequilibrium phase transitions t
might appear in the stationary state of such systems@1#. It is
believed that continuous phase transitions can be class
into relatively few universality classes. It is becoming e
dent, however, that such a classification is far more com
cated in nonequilibrium systems than in equilibrium ones
the equilibrium case, renormalization group and conform
invariance theories gave a powerful description of this u
versal phenomena. In nonequilibrium, the situation is far l
clear due to the lack of a general theory. Accordingly, a la
body of works is based on numerical simulations.

Models with absorbing states constitute a particularly r
class. For these models there is a substantial evidence
continuous phase transitions can be classified into some
versality classes. In particular, a large group of models f
into the so-called directed percolation~DP! universality class
and it was conjectured that all models with a single abso
ing state, positive one-component order parameter and s
range dynamics should generically belong to this universa
class@2#. Another group consists of models having a dou
degenerate absorbing state or whose dynamics obey s
conservation law; they belong to the parity-conserving~PC!
universality class@3#.

The behavior of models with a larger number of absorb
states was also addressed in the literature. For exam
Bassler and Browne examined a model with three absorb
states and concluded that depending on some param
their model might exhibit DP or PC criticality@4#. However,
the control parameters in their model~adsorption rates! in-
troduce asymmetry between absorbing states when the
cal point is approached. Consequently, one or two species
effectively expelled from the system upon approaching
critical point hence the DP or PC criticality is an expect
feature of this model. Similarly, certain asymmetries are
sponsible for the DP criticality in yet another model wi
multiple absorbing states that was studied by Janssen@5#.

To examine the role of degeneracy, one has to study m
els where the symmetry between absorbing states is not
1063-651X/2002/66~1!/016106~5!/$20.00 66 0161
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ken at the level of dynamics. Good candidates for suc
system are certain multispecies generalizations of the con
process model@6,7#. In the two-species case these mod
exhibit the expected PC criticality. In the three-species c
Hinrichsen suggested@7# that such models will always re
main in the active phase. This property, which should also
true for models with a larger number of absorbing stat
follows from an approximate relationship with theq-species,
parity-conserving branching-annihilating random walk mo
els (q-BARW2, where the number at the end indicates t
number of offsprings! @8#. Recently, Hinrichsen’s conjectur
was numerically confirmed for models with three and fo
absorbing states@9#.

One can thus expect that for a given dimensionality,
number of~symmetric! absorbing states is the relevant p
rameter determining the critical behavior of a given mod
However, for nonequilibrium systems some other details
the dynamics as, e.g., exclusion effects@11,13# or certain
local symmetries@14#, might affect critical behavior. The
goal of the present paper is to provide yet another exampl
the dynamics-dependent criticality. In particular, we sh
that for a one-dimensional model with three absorbing sta
its critical behavior is PC-like~instead of the expected
q-BARW2-like!, when certain local constraints on the d
namics of a model are introduced. Let us emphasize
these constraints, which can be regarded as a local symm
breaking, do not violate the symmetry between absorb
states@10#. We also suggest a mechanism that could expl
such a behavior.

Our work shows that not only global properties of a giv
model, as the number of absorbing states, but also ce
details of the dynamics are relevant to determine its criti
behavior. Accordingly, classification of the critical properti
of models with absorbing states is more complicated th
originally thought.

The critical behavior ofq-BARW2 models was recently
found to be richer than originally expected. Indeed, in o
dimension hard-core effects are known to change the
critical exponents of the model@11,12#. Let us notice that
these effects do not change the location of the critical po
and of the on-critical exponents@13#. At the coarse-grained
level, our model can be also regarded as a certainq-BARW2
©2002 The American Physical Society06-1
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model. In our case, however, dynamical details have m
dramatic effect: they change both the location of the criti
point and values of all critical exponents.

II. MODEL AND ITS MONTE CARLO SIMULATIONS

Before defining our dynamical model, let us recall som
basic properties of the usual equilibrium Potts model. F
we assign at each lattice sitei a q-state variables i
50,1, . . . ,q21. Next, we define the energy of this mod
through the Hamiltonian,

H52(
i , j

ds is j
, ~1!

where summation is over pairs ofi and j that are usually
nearest neighbors andd is the Kroneckerd function. This
equilibrium model was studied using many different analy
cal and numerical methods and is a rich source of the in
mation about phase transitions and critical phenomena@15#.

To simulate numerically the equilibrium Potts model d
fined using the Hamiltonian~1! one introduces a stochast
Markov process with transition rates chosen in such a w
that the asymptotic probability distribution is the Boltzma
distribution. One possibility of choosing such rates is t
so-called Metropolis algorithm. In this method@16# one
looks at the energy differenceDE between the final and ini
tial configuration and accept the move with probability m
$1,e2DE/T%, whereT is temperature measured in units of t
interaction constant of the Hamiltonian~1!, which was set to
unity. To obtain a final configuration one selects randoml
site and its state~one out ofq in our case!. In the above
described algorithm forT.0 there is always a positive prob
ability of leaving any given configuration~even when the
final configuration has a higher energy!. Accordingly, such a
model does not have absorbing states forT.0.

A. A model

To transform the standard Metropolis dynamics into
dynamics with absorbing states we make the follow
modification.

Restriction A. When all neighbors of a given site are in th
same state as this site, then this site cannot change its
~at least until one of its neighbors is changed!.

In the following, this nonequilibrium model will be re
ferred to asA model. Obviously, any ofq ground states of
model~1! is an absorbing state ofA model and the dynamic
does not favor any of the absorbing states. Since the dyn
ics of our models is obtained from a modification of t
Metropolis algorithm of an equilibrium system, transitio
probabilities are parametrized by temperaturelike quantityT.
Strictly speaking, for our model the ordinary~i.e., equilib-
rium! temperature cannot be defined. Nevertheless, we
refer to this quantity as temperature.

To study the properties of thisA model we performed
Monte Carlo simulations~MCS!. A natural characteristic o
models with absorbing states is the steady-state densit
active sitesr. A given sitei is active when at least one of it
neighbors is in a state different thani. Otherwise the sitei is
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called nonactive. In addition to the steady-state density
also looked at its time dependencer(t). In the active phase
r(t) converges to the positive value while at criticality,r(t)
has a power-law decayr;t2d. In the absorbing phase th
densityr decays either faster than a power oft or as a power
of t but with a different exponent than the critical expone
d. The unit of time is defined as a single~on average! update
of each active site.

In addition, we used the so-called dynamic Monte Ca
method where one sets the system in the absorbing s
locally initiate activity, and then monitor some stochas
properties of surviving runs@17#. The most frequently used
characteristics are the survival probabilityP(t) that the ac-
tivity survives at least until timet and the number of active
sitesN(t) ~averaged over all runs!. At criticality these quan-

tities are expected to have power-law decay:P(t);t2d8 and
N(t);th. ~For some modelsd5d8, but exceptions are also
known @1#.!

Our simulations were made for various system sizes
we ensured that the system was large enough so that
results are size independent.

The simplest case is to consider a one-dimensional ch
However, forq52 and for any temperatureT, this model is
trivially equivalent to theT50 temperature Ising model with
Metropolis dynamics. Indeed, in this case the allowed mo
are only those, which do not increase energy and are alw
accepted. The same rule governs the dynamics of theT50
Ising chain.

To overcome this geometrical ‘‘pathology’’ we consid
our A model on a ladderlike lattice where two chains a
connected by interchain bonds such that each site has t
neighbors. Figure 1 illustrates the possibility of spreading
activity in the ladder geometry forq52. The results of the
simulations of such case are in agreement with the up-to-
knowledge concerning one-dimensional systems with mu
absorbing states. Thus we only briefly describe our resu
For q52 the model has two symmetric absorbing states~all
s i50 or 1!. Qualitatively, in this case the model resembl
other models with two absorbing states@6,7#, which are
known to belong to PC universality class and our simulatio
confirm such a behavior.

First, the steady-state measurement of the density of
tive sites suggests a continuous phase transition betwee
tive and absorbing phases aroundT52.7 ~see Fig. 2!. Mea-
suring the time dependence ofr(t) we observed that atT
52.7 r(t);t2d where d is very close to the PC value
0.286. Moreover, in the low-temperature (T,2.7) phase
r(t);t20.5, which is also a typical feature of PC model
Additional confirmation of PC criticality in this case is ob
tained using the dynamical Monte Carlo method that yie
d850.29(3) andh520.02(3).

A different behavior appears in theq53 case. Although
in Fig. 2 one can see a sudden change of the order param
aroundT50.8, there is no phase transition in this case. E
amining the behavior ofr(t), we checked that even at low
temperature (T50.5 and 0.6! the system remains in the ac
tive phase. In addition simulations suggest that forq54 and
5 A model behaves similarly to theq53 case.
6-2
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Actually, we expect that forq>3 the model has a critica
point but only atT50. This point corresponds to the case
zero branching rate in aq-BARW2 model, which is known to
be characterized by, e.g.,b51 ~with the order paramete
expressed in terms of the branching rate! @9#.

As we already mentioned, the absence of the transition
q>3 andT.0 is an expected feature. However, as we w
show below, additional restriction in the dynamical rules
our model induces a transition even forq>3.

B. B model

This restriction can be formulated as follows.
Restriction B. A flip into a state different from any of its

neighbors is prohibited. In other words, spontaneous crea
of, for example, domains of typeA between domains of type
B andC is forbidden. Here,A, B, andC denote three~out of
q) different states.

Let us notice that restrictionB satisfies at the same tim
restrictionA ~but of course not vice versa!. In the following
we will refer to the model satisfying restrictionB as B
model. Let us also notice that restrictionB does not break the
symmetry andB model similarly toA model hasq symmetric
absorbing states. Results of the simulations ofB model for
q53 are shown in Figs. 2–5~for q52 both dynamicsA and
B are equivalent!. First, let us notice that the densityr ~Fig.
2! is only slightly larger forB-model than forA-model with
q52 ~the difference is, however, larger than error bars!. In

FIG. 1. At positive temperature a single domain can branch
additional domains. Successive~in time! configurations differ only
by single-site flips. States 0 and 1 are represented by ‘‘x’’ a
‘‘o,’’ respectively. In the single-chain geometry andq52 such a
branching is forbidden and domain walls can only diffuse or an
hilate. In terms of BARW models, where each domain wall rep
sents a particle, the above sequence is equivalent to branching
01610
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addition, this difference diminishes upon approaching
transition point and within our numerical accuracy both tra
sitions seem to take place at the same temperature. Late
we provide some arguments that could explain this appa
coincidence.

The behavior ofr(t) ~Fig. 3! is typical for PC universality
class. In the low-temperature phase (T,2.7) we observe the
power-law decayr(t);t21/2 while at criticality (T52.7)
r(t);t2d and we estimated50.29(2). The dynamical
Monte Carlo method confirms the PC criticality of th
model @18#. Indeed, P(t) scales with the exponentd8
50.29(2) ~Fig. 4! and at criticalityN(t) remains virtually
constant~Fig. 5!, which is in agreement with the PC valu
h50.0. In our opinion, the above results clearly indicate t
PC criticality ofB model. This behavior can be qualitative

o

d

i-
-

FIG. 2. The steady-state densityr as a function ofT for A model
and q52 (1),3 (!) and for B model with q53 (h). Simula-
tions were made for the system sizeL530 000 and simulation time
t5105 MCS. The low-temperature tail forq53 does not diminish
for longer simulations or larger system size.

FIG. 3. The time dependence of the densityr(t) for B model
with q53 and~from top! T52.9, 2.8, 2.7~critical!, 2.6, 2.5, 2.4,
and 2.3 (L520 000). Each line is an average of 100 independ
runs which starts from random initial configurations. Straight dot
lines have slopes corresponding tod50.286 and 0.5.
6-3
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explained by considering the relation between our mod
and certain multispecies parity-conservingq-BARW2 mod-
els.

The relation with such models is based on the observa
that each domain wall can be at least approximately ide
fied as a branching and annihilating random walker.
though precise mappings between absorbing states
BARW models are usually complicated, one can argue@7#
that most relevant processes are only long-lived ones w
considerably simplifies the resulting BARW model. In pa
ticular, Hinrichsen argued that dynamics of models with t
absorbing states should be approximately described by
following BARW2 model@7#:

2X→0, X→3X. ~2!

This model is known to belong to the PC universality cla
@19#. Since there are several types of domain walls, m
pings for models with more than two absorbing states req
several types of random walkers. Hooyberghs et al. arg
that typically in the correspondingq-BARW2 models the
following reactions should be included@9#:

X→Y1Z, ~3!

Y1Z→X. ~4!

The process~3! represents the formation of a domain of, e.
typeC between domains of typeA andB. The process~4! is
its reverse and corresponds to the disappearance of the
main C. The q-species BARW2 model~2!–~4! differs from
the one studied by Cardy and Ta¨uber @8#. However, the dif-
ferences do not affect the critical behavior that is the sa
for both models. We expect that ourA model forq.2 at the
coarse-grained level is also described byq-BARW model
with reactions~2!–~4!.

Let us now notice that in ourB model, the formation of
the intruding domainC between domainsA andB is forbid-

FIG. 4. The time dependence of the survival probabilityP(t) for
B model with q53 and~from top! T52.9, 2.8, 2.7~critical!, 2.6,
2.4, 2.2, and 2.0 (L550 000). Each line is an average of about 16

independent runs. Straight dotted lines have slopes correspondi
d50.286 and 0.5, respectively.
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den, hence processes of the type~3! are forbidden. The
q-species BARW2 model that corresponds toB model is thus
described by reactions~2! and ~4!. The main point of our
argument to explain the PC criticality of theB model is the
following: The suppressing of the processes~3! implies sepa-
ration of time scales of parity-conserving processes~2!,
which happen at the much shorter time scale than par
nonconserving processes~4!. As a result theq-BARW2
model spatially decomposes into single-species ‘‘cloud
The dynamics within each ‘‘cloud’’ corresponds exactly
the dynamics of theq52 B model ~which is exactly the
same as forA model!, which at the coarse-grained level
given only by parity-conserving processes~2!. Nonconserv-
ing processes~4! operate only when different clouds collid
@20#. Upon approaching the transition point domains coar
and the distances between clouds increase. As a result,
conserving processes happen only on a very long time sc
~Snapshots of Monte Carlo simulations qualitatively confi
formation of such single-species clouds!. On the other hand
the order parameter of the system, i.e., the number of
ticles is mainly determined by the parity-conserving pr
cesses~these processes determine the concentration of
ticles within clouds!. As a result, the most relevant dynami
of the model is dominated by the parity-conserving proces
that implies PC criticality. As we already mentioned, the
processes correspond to the coarse-grained dynamics o
q52 model, which thus explains why transition temper
tures forq52 and 3 are the same. It would be interesting
confirm these qualitative considerations with more sou
theoretical arguments.

III. CONCLUSIONS

In conclusion, we have shown that the critical behavior
a model withq absorbing states is not only characterized
the number of absorbing states but that details of the dyn

to

FIG. 5. The time dependence of the number of active sitesN(t)
for B model with q53 and ~from top! T52.9, 2.8, 2.7~critical!,
2.6, 2.4, 2.2, and 2.0 (L550 000). Each line is an average of abo
106 independent runs. The straight dotted line has a slope co
sponding tod50.5.
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ics are also important. At the coarse-grained level our mo
is equivalent to a certainq-BARW2 model. It would be in-
teresting to check whether suppression of processes~3! in
q-BARW2 model leads to a similar change of the critic
behavior.
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